
CS103 Handout 20
Spring 2012 June 1, 2012

Problem Set 9

What problems do we think can't be solved efficiently? Are they purely theoretical concepts
invented to scare mathematicians, or might you encounter it some day?

Start this problem set early. It contains three problems (plus one survey question and one extra
credit problem). I suggest reading through this problem set at least once as soon as you get it to
get a sense of what it covers.

As much as you possibly can, please try to work on this problem set individually. That said, if
you do work with others, please be sure to cite who you are working with and on what problems.
For more details, see the section on the honor code in the course information handout.

In any question that asks for a proof, you must provide a rigorous mathematical proof. You
cannot draw a picture or argue by intuition. You should, at the very least, state what type of proof
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what
it is that you are trying to show. If we specify that a proof must be done a certain way, you must
use that particular proof technique; otherwise you may prove the result however you wish.

As always, please feel free to drop by office hours or send us emails if you have any questions.
We'd be happy to help out.

This problem set has 125 possible points. It is weighted at 6% of your total grade.

Good luck, and have fun!

Due Wednesday, June 6th at 2:15 PM

Problem One: The Long Path Problem (30 points)

Given an undirected graph G = (V, E), a simple path in a G is a path between two nodes u, v ∈ V such
that no node is repeated on the path. For example, given this graph:

B C

D

EF

A

A → C → E is a simple path from A to E, but A → B → E → C → A → D is not a simple path because
node A is visited twice.*

Consider the following language:

 ULONGPATH = { ⟨G, u, v, k | ⟩ G is an undirected graph,
 u and v are nodes in the graph, and

 there exists a simple path from u to v containing k nodes. }

For example, if G is the above graph, then ⟨G, D, F, 6 ⟩ ∈ ULONGPATH because there is a simple path
of six nodes from D to F (namely, D → A → C → E → B → F), but ⟨G, A, C, 5 ⟩ ∉ ULONGPATH
because there is no simple path of 5 nodes from A to C.

i. Show that ULONGPATH is in NP by designing a deterministic polynomial-time verifier for it.
You should prove that your verifier is correct by showing that ⟨G, u, v, k ⟩ ∈ ULONGPATH iff
there is some x such that your verifier accepts ⟨G, u, v, k, x . However, you can give an⟩
informal justification as to why your machine runs in polynomial time.

In an undirected graph G = (V, E), a Hamiltonian path is a simple path between two nodes u and v that
visits every node in the graph exactly once. For example, in this graph:

B C

D

EF

A

The path F → B → E → C → A → D is a Hamiltonian path from F to D, but F → B → E → D is not
(because it doesn't visit every node), nor is F → B → E → D → A → C → E → D (because it is not a
simple path).

* Although we defined a path in a graph as a series of edges, it is often easier to reason about the path as the series of
nodes that it passes through. Throughout this problem set, we will adopt this convention.

The language UHAMPATH is defined as follows:

UHAMPATH = {⟨G, u, v | ⟩ G is an undirected graph and
 there is a Hamiltonian path from u to v.}

UHAMPATH is known to be NP-complete by a fairly clever series of reductions from SAT; see Sipser,
page 291 for more details.

ii. Prove that ULONGPATH is NP-complete by showing that UHAMPATH ≤P ULONGPATH. You
should prove your reduction is correct (i.e, w ∈ UHAMPATH iff f(w) ∈ ULONGPATH), but feel
free to justify informally why your reduction works in polynomial time.

Problem Two: P ≟ NP (30 points)

This problem explores the question

What would it take to prove whether or not P = NP?

Below are twelve numbered statements. For each statement, identify whether the statement would
definitely prove that P = NP, definitely prove that P ≠ NP, or not prove either result. No justification is
necessary.

(1) There is an NP language that can be decided in polynomial time.

(2) There is an NP-complete language that can be decided in polynomial time.

(3) There is an NP-hard language that can be decided in polynomial time.

(4) There is an NP language that cannot be decided in polynomial time.

(5) There is an NP-complete language that cannot be decided in polynomial time.

(6) There is an NP-hard language that cannot be decided in polynomial time.

(7) There is some NP-complete language that can be decided in O(2n) time.

(8) There is no NP-complete language that can be decided in O(2n) time.

(9) There is a polynomial-time verifier for every language in NP.

(10) There is a a polynomial-time decider for every language in NP.

(11) All languages in NP are decidable.

(12) All languages in P are decidable.

Problem Three: The Big Picture (60 points)

We have covered a lot of ground in this course throughout our whirlwind tour of computability and
complexity theory. This last question surveys what we have covered so far by asking you to see how
everything we have covered relates.

Take a minute to review the hierarchy of languages we set up:

REG ⊂DCFL ⊂ CFL ⊂ P ⊆NP ⊂ R ⊂ RE ⊂ ALL

The following questions ask you to provide examples of languages at different spots within this
hierarchy. In each case, you should provide an example of a language, but you don't need to formally
prove that it has the properties required. Instead, describe a proof technique you could use to show that
the language has the required properties. There are many correct answers to these problems, and we'll
accept any of them.

i. Give an example of a regular language. How might you prove that it is regular?

ii. Give an example of a context-free language is not regular. How might you prove that it is
context-free? How might you prove that it is not regular?

iii. Give an example of a language in P that is not context-free. How might you prove that it is in
P? How might you prove that it is not context-free?

iv. Give an example of a language in NP suspected not to be in P. How might you prove that it is
in NP? Why do we think that it is not contained in P?

v. Give an example of a language in RE not contained in R. How might you prove that it is RE?
How might you prove that it is not contained in R?

vi. Give an example of a language in co-RE not contained in R. How might you prove that it is
co-RE? How might you prove that it is not contained in R?

vii. Give an example of a language that is neither RE nor co-RE. How might you prove it is not
contained in RE? How might you prove it is not contained in co-RE?

Problem Four: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're
doing. For a free five points, please answer the following questions. We'll give you full credit no
matter what you write (as long as you write something!), but we'd appreciate it if you're honest about
how we're doing.

i. If we should keep any one thing about this course the same in future offerings, what would
it be?

ii. If you could change any one thing about this course, what would it be?

iii. What topic did you think was the most interesting? What topic did you think was the
least interesting?

Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class. This is probably the easiest way
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout
hangout in the Gates building. If you haven't been there before, it's right inside the entrance
labeled “Stanford Engineering Venture Fund Laboratories.” There will be a clearly-labeled
filing cabinet where you can submit your solutions.

3. Send an email with an electronic copy of your answers to the submission mailing list
(cs103-spr1112-submissions@lists.stanford.edu) with the string “[PS9]” somewhere in the
subject line. If you do submit electronically, please submit your assignment as a single PDF if
at all possible. Sending multiple image files makes it much harder to grade your submission.

If you are an SCPD student, we would strongly prefer that you submit solutions via email. Please
contact us if this will be a problem.

Extra Credit Problem (Worth an automatic A+, $1,000,000, and a Stanford Ph.D)

Prove or disprove: P = NP.

mailto:cs103-spr1112-submissions@lists.stanford.edu

