
CS103 Handout 20
Spring 2012 June 1, 2012

Problem Set 9

What problems do we think can't  be solved efficiently?  Are they purely theoretical concepts 
invented to scare mathematicians, or might you encounter it some day?

Start this problem set early.  It contains three problems (plus one survey question and one extra 
credit problem).  I suggest reading through this problem set at least once as soon as you get it to 
get a sense of what it covers.

As much as you possibly can, please try to work on this problem set individually.  That said, if 
you do work with others, please be sure to cite who you are working with and on what problems. 
For more details, see the section on the honor code in the course information handout.

In any question that asks for a proof, you  must provide a rigorous mathematical proof.  You 
cannot draw a picture or argue by intuition.  You should, at the very least, state what type of proof 
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what 
it is that you are trying to show.  If we specify that a proof must be done a certain way, you must 
use that particular proof technique; otherwise you may prove the result however you wish.

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 6% of your total grade.

Good luck, and have fun!

Due Wednesday, June 6th at 2:15 PM



Problem One: The Long Path Problem (30 points)

Given an undirected graph G = (V, E), a simple path in a G is a path between two nodes u, v  ∈ V such 
that no node is repeated on the path.  For example, given this graph:
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A → C → E is a simple path from A to E, but A → B → E → C → A → D is not a simple path because 
node A is visited twice.*

Consider the following language:

         ULONGPATH = { ⟨G, u, v, k  |  ⟩ G is an undirected graph, 
  u and v are nodes in the graph, and 

    there exists a simple path from u to v containing k nodes. }

For example, if G is the above graph, then ⟨G, D, F, 6   ⟩ ∈ ULONGPATH because there is a simple path 
of six nodes from D to F (namely, D → A → C → E → B → F), but ⟨G,  A,  C, 5   ⟩ ∉ ULONGPATH 
because there is no simple path of 5 nodes from A to C.

i. Show that ULONGPATH is in NP by designing a deterministic polynomial-time verifier for it. 
You should prove that your verifier is correct by showing that ⟨G, u, v, k   ⟩ ∈ ULONGPATH iff 
there is  some  x such that your verifier  accepts ⟨G,  u,  v,  k,  x .   However,  you can give an⟩  
informal justification as to why your machine runs in polynomial time.

In an undirected graph G = (V, E), a Hamiltonian path is a simple path between two nodes u and v that 
visits every node in the graph exactly once.  For example, in this graph:
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The path F → B → E → C → A → D is a Hamiltonian path from F to D, but F → B → E → D is not  
(because it doesn't visit every node), nor is F → B → E → D → A → C → E → D (because it is not a  
simple path).

* Although we defined a path in a graph as a series of edges, it is often easier to reason about the path as the series of 
nodes that it passes through.  Throughout this problem set, we will adopt this convention.



The language UHAMPATH is defined as follows:

UHAMPATH = {⟨G, u, v  | ⟩ G is an undirected graph and
                                                               there is a Hamiltonian path from u to v.}

UHAMPATH is known to be NP-complete by a fairly clever series of reductions from SAT; see Sipser, 
page 291 for more details.

ii. Prove that ULONGPATH is NP-complete by showing that UHAMPATH ≤P ULONGPATH.  You 
should prove your reduction is correct (i.e, w  ∈ UHAMPATH iff f(w)  ∈ ULONGPATH), but feel 
free to justify informally why your reduction works in polynomial time.

Problem Two: P ≟ NP (30 points)

This problem explores the question

What would it take to prove whether or not P = NP?

Below are twelve numbered statements.  For each statement, identify whether the statement would 
definitely prove that P = NP, definitely prove that P ≠ NP, or not prove either result.  No justification is 
necessary.

(1) There is an NP language that can be decided in polynomial time.

(2) There is an NP-complete language that can be decided in polynomial time.

(3) There is an NP-hard language that can be decided in polynomial time.

(4) There is an NP language that cannot be decided in polynomial time.

(5) There is an NP-complete language that cannot be decided in polynomial time.

(6) There is an NP-hard language that cannot be decided in polynomial time.

(7) There is some NP-complete language that can be decided in O(2n) time.

(8) There is no NP-complete language that can be decided in O(2n) time.

(9) There is a polynomial-time verifier for every language in NP.

(10) There is a a polynomial-time decider for every language in NP.

(11) All languages in NP are decidable.

(12) All languages in P are decidable.



Problem Three: The Big Picture (60 points)

We have covered a  lot of ground in this course throughout our whirlwind tour of computability and 
complexity theory.  This last question surveys what we have covered so far by asking you to see how 
everything we have covered relates.

Take a minute to review the hierarchy of languages we set up:

REG  ⊂DCFL  ⊂ CFL  ⊂ P  ⊆NP  ⊂ R  ⊂ RE  ⊂ ALL

The  following  questions  ask  you  to  provide  examples  of  languages  at  different  spots  within  this 
hierarchy.  In each case, you should provide an example of a language, but you don't need to formally 
prove that it has the properties required.  Instead, describe a proof technique you could use to show that 
the language has the required properties.  There are many correct answers to these problems, and we'll 
accept any of them.

i. Give an example of a regular language.  How might you prove that it is regular?

ii. Give an example of a context-free language is not regular.  How  might you prove that it  is 
context-free?  How might you prove that it is not regular?

iii. Give an example of a language in P that is not context-free.  How might you prove that it is in 
P?  How might you prove that it is not context-free?

iv. Give an example of a language in NP suspected not to be in P.  How might you prove that it is 
in NP?  Why do we think that it is not contained in P?

v. Give an example of a language in RE not contained in R.  How might you prove that it is RE? 
How might you prove that it is not contained in R?

vi. Give an example of a language in co-RE not contained in R.  How might you prove that it is 
co-RE?  How might you prove that it is not contained in R?

vii. Give an example of a language that is neither RE nor co-RE.  How might you prove it is not 
contained in RE?  How might you prove it is not contained in co-RE?

Problem Four: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how  we're  
doing.  For a free five points, please answer the following questions.  We'll give you full credit no 
matter what you write (as long as you write something!), but we'd appreciate it if you're honest about 
how we're doing.

i. If we should keep any one thing about this course the same in future offerings, what would 
it be?

ii. If you could change any one thing about this course, what would it be?

iii. What topic did you think was the most interesting?  What topic did you think was the 
least interesting?



Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest way 
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout 
hangout in the Gates building.  If you haven't been there before, it's right inside the entrance 
labeled “Stanford Engineering Venture Fund Laboratories.”   There will  be a  clearly-labeled 
filing cabinet where you can submit your solutions.

3. Send  an  email  with  an  electronic  copy  of  your  answers  to  the  submission  mailing  list
(cs103-spr1112-submissions@lists.stanford.edu)  with  the  string  “[PS9]”  somewhere  in  the 
subject line.  If you do submit electronically, please submit your assignment as a single PDF if  
at all possible.  Sending multiple image files makes it much harder to grade your submission.

If you are an SCPD student, we would strongly prefer that you submit solutions via email.  Please 
contact us if this will be a problem.

Extra Credit Problem (Worth an automatic A+, $1,000,000, and a Stanford Ph.D)

Prove or disprove: P = NP.
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